3.1949 \(\int \frac{(1-2 x)^{5/2} (3+5 x)^2}{(2+3 x)^3} \, dx\)

Optimal. Leaf size=109 \[ \frac{143 (1-2 x)^{7/2}}{882 (3 x+2)}-\frac{(1-2 x)^{7/2}}{126 (3 x+2)^2}+\frac{211}{441} (1-2 x)^{5/2}+\frac{1055}{567} (1-2 x)^{3/2}+\frac{1055}{81} \sqrt{1-2 x}-\frac{1055}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

[Out]

(1055*Sqrt[1 - 2*x])/81 + (1055*(1 - 2*x)^(3/2))/567 + (211*(1 - 2*x)^(5/2))/441 - (1 - 2*x)^(7/2)/(126*(2 + 3
*x)^2) + (143*(1 - 2*x)^(7/2))/(882*(2 + 3*x)) - (1055*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/81

________________________________________________________________________________________

Rubi [A]  time = 0.0341017, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {89, 78, 50, 63, 206} \[ \frac{143 (1-2 x)^{7/2}}{882 (3 x+2)}-\frac{(1-2 x)^{7/2}}{126 (3 x+2)^2}+\frac{211}{441} (1-2 x)^{5/2}+\frac{1055}{567} (1-2 x)^{3/2}+\frac{1055}{81} \sqrt{1-2 x}-\frac{1055}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*(3 + 5*x)^2)/(2 + 3*x)^3,x]

[Out]

(1055*Sqrt[1 - 2*x])/81 + (1055*(1 - 2*x)^(3/2))/567 + (211*(1 - 2*x)^(5/2))/441 - (1 - 2*x)^(7/2)/(126*(2 + 3
*x)^2) + (143*(1 - 2*x)^(7/2))/(882*(2 + 3*x)) - (1055*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/81

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2} (3+5 x)^2}{(2+3 x)^3} \, dx &=-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{1}{126} \int \frac{(1-2 x)^{5/2} (557+1050 x)}{(2+3 x)^2} \, dx\\ &=-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{143 (1-2 x)^{7/2}}{882 (2+3 x)}+\frac{1055}{294} \int \frac{(1-2 x)^{5/2}}{2+3 x} \, dx\\ &=\frac{211}{441} (1-2 x)^{5/2}-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{143 (1-2 x)^{7/2}}{882 (2+3 x)}+\frac{1055}{126} \int \frac{(1-2 x)^{3/2}}{2+3 x} \, dx\\ &=\frac{1055}{567} (1-2 x)^{3/2}+\frac{211}{441} (1-2 x)^{5/2}-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{143 (1-2 x)^{7/2}}{882 (2+3 x)}+\frac{1055}{54} \int \frac{\sqrt{1-2 x}}{2+3 x} \, dx\\ &=\frac{1055}{81} \sqrt{1-2 x}+\frac{1055}{567} (1-2 x)^{3/2}+\frac{211}{441} (1-2 x)^{5/2}-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{143 (1-2 x)^{7/2}}{882 (2+3 x)}+\frac{7385}{162} \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx\\ &=\frac{1055}{81} \sqrt{1-2 x}+\frac{1055}{567} (1-2 x)^{3/2}+\frac{211}{441} (1-2 x)^{5/2}-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{143 (1-2 x)^{7/2}}{882 (2+3 x)}-\frac{7385}{162} \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=\frac{1055}{81} \sqrt{1-2 x}+\frac{1055}{567} (1-2 x)^{3/2}+\frac{211}{441} (1-2 x)^{5/2}-\frac{(1-2 x)^{7/2}}{126 (2+3 x)^2}+\frac{143 (1-2 x)^{7/2}}{882 (2+3 x)}-\frac{1055}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0409908, size = 68, normalized size = 0.62 \[ \frac{1}{486} \left (\frac{3 \sqrt{1-2 x} \left (2160 x^4-3960 x^3+12828 x^2+25987 x+10007\right )}{(3 x+2)^2}-2110 \sqrt{21} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(5/2)*(3 + 5*x)^2)/(2 + 3*x)^3,x]

[Out]

((3*Sqrt[1 - 2*x]*(10007 + 25987*x + 12828*x^2 - 3960*x^3 + 2160*x^4))/(2 + 3*x)^2 - 2110*Sqrt[21]*ArcTanh[Sqr
t[3/7]*Sqrt[1 - 2*x]])/486

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 75, normalized size = 0.7 \begin{align*}{\frac{10}{27} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}+{\frac{130}{81} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}+{\frac{1006}{81}\sqrt{1-2\,x}}+{\frac{14}{9\, \left ( -6\,x-4 \right ) ^{2}} \left ( -{\frac{149}{18} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}+{\frac{343}{18}\sqrt{1-2\,x}} \right ) }-{\frac{1055\,\sqrt{21}}{243}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^3,x)

[Out]

10/27*(1-2*x)^(5/2)+130/81*(1-2*x)^(3/2)+1006/81*(1-2*x)^(1/2)+14/9*(-149/18*(1-2*x)^(3/2)+343/18*(1-2*x)^(1/2
))/(-6*x-4)^2-1055/243*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 5.01207, size = 136, normalized size = 1.25 \begin{align*} \frac{10}{27} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + \frac{130}{81} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{1055}{486} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) + \frac{1006}{81} \, \sqrt{-2 \, x + 1} - \frac{7 \,{\left (149 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 343 \, \sqrt{-2 \, x + 1}\right )}}{81 \,{\left (9 \,{\left (2 \, x - 1\right )}^{2} + 84 \, x + 7\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^3,x, algorithm="maxima")

[Out]

10/27*(-2*x + 1)^(5/2) + 130/81*(-2*x + 1)^(3/2) + 1055/486*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(
21) + 3*sqrt(-2*x + 1))) + 1006/81*sqrt(-2*x + 1) - 7/81*(149*(-2*x + 1)^(3/2) - 343*sqrt(-2*x + 1))/(9*(2*x -
 1)^2 + 84*x + 7)

________________________________________________________________________________________

Fricas [A]  time = 1.64676, size = 266, normalized size = 2.44 \begin{align*} \frac{1055 \, \sqrt{7} \sqrt{3}{\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac{\sqrt{7} \sqrt{3} \sqrt{-2 \, x + 1} + 3 \, x - 5}{3 \, x + 2}\right ) + 3 \,{\left (2160 \, x^{4} - 3960 \, x^{3} + 12828 \, x^{2} + 25987 \, x + 10007\right )} \sqrt{-2 \, x + 1}}{486 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^3,x, algorithm="fricas")

[Out]

1/486*(1055*sqrt(7)*sqrt(3)*(9*x^2 + 12*x + 4)*log((sqrt(7)*sqrt(3)*sqrt(-2*x + 1) + 3*x - 5)/(3*x + 2)) + 3*(
2160*x^4 - 3960*x^3 + 12828*x^2 + 25987*x + 10007)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**2/(2+3*x)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.45036, size = 138, normalized size = 1.27 \begin{align*} \frac{10}{27} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} + \frac{130}{81} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{1055}{486} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{1006}{81} \, \sqrt{-2 \, x + 1} - \frac{7 \,{\left (149 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 343 \, \sqrt{-2 \, x + 1}\right )}}{324 \,{\left (3 \, x + 2\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^2/(2+3*x)^3,x, algorithm="giac")

[Out]

10/27*(2*x - 1)^2*sqrt(-2*x + 1) + 130/81*(-2*x + 1)^(3/2) + 1055/486*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqr
t(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1006/81*sqrt(-2*x + 1) - 7/324*(149*(-2*x + 1)^(3/2) - 343*sqrt(
-2*x + 1))/(3*x + 2)^2